code editing convertSampleDataIntoCoIntensityNetwork function 11-06-2014d1616

2014-11-07

code editing convertSampleDataIntoCoIntensityNetwork function 11-06-2014d1616



11-07-2014d1327

I think using all 45,000 genes from some of the gene expression datasets will produce networks that are too big to analyze with a normal analysis. I think I will just randomly select 500 genes.



11-07-2014d1011

I'll try to precalculate parts for lists.

formula for pearsons correlation coefficient here

Is Sum((xi-xbar)*(yi-ybar)) the same as Sum(xi-xbar)*Sum(yi-ybar)?

I'll do a little test with a few lists.

No they are not the same thing. Sum(xi-xbar)*Sum(yi-ybar) will always be 0.


code before trying to split matrix into blocks

public void convertSampleDataIntoCoIntensityNetwork(double[][] values, double threshold, String output_directory)
{
PearsonsCorrelation pc = new PearsonsCorrelation();

String[] sarray = new String[values.length];
useful_tools.createTextFile(output_directory, "row1.txt", Arrays.toString(values[0]));
//fill up the similarity score with absolute value correlation coefficient values, but just write each row to a separate text file

String edges = "";
for(int i=0; i<values.length; i++)
{
System.out.println(i);
String current_row = "";
for(int j=i+1; j<values.length; j++)
{

double calculated_similarity_score = Math.abs(pc.correlation(values[i], values[j]));
int link=0;
if(calculated_similarity_score>threshold)
{
link = 1;

if(i==(values.length-1) && link==1)

edges+=i+"\t"+j;

else if(link==1)

edges+=i+"\t"+j+"\r\n";

}
}

useful_tools.createTextFile(output_directory, "network.txt", edges);
}
}