Home
News
Feed
search engine
by
freefind
advanced
code editing convertSampleDataIntoCoIntensityNetwork function 11-06-2014d1616
2014-11-07
code editing convertSampleDataIntoCoIntensityNetwork function 11-06-2014d1616 --------- 11-07-2014d1327 I think using all 45,000 genes from some of the gene expression datasets will produce networks that are too big to analyze with a normal analysis. I think I will just randomly select 500 genes. ------------- 11-07-2014d1011 I'll try to precalculate parts for lists. formula for pearsons correlation coefficient here -http://www.socscistatistics.com/tests/pearson/ Is Sum((xi-xbar)*(yi-ybar)) the same as Sum(xi-xbar)*Sum(yi-ybar)? I'll do a little test with a few lists. -"C:\Sync\pDR\2014\2014\11-07-2014d1014\Calculation test 11-07-2014d1014.xlsx" --This spreadsheet also has a spreadsheet calculating later verifcations of the correlation calculation. No they are not the same thing. Sum(xi-xbar)*Sum(yi-ybar) will always be 0. ------- code before trying to split matrix into blocks { public void convertSampleDataIntoCoIntensityNetwork(double[][] values, double threshold, String output_directory) { PearsonsCorrelation pc = new PearsonsCorrelation(); String[] sarray = new String[values.length]; useful_tools.createTextFile(output_directory, "row1.txt", Arrays.toString(values[0])); //fill up the similarity score with absolute value correlation coefficient values, but just write each row to a separate text file String edges = ""; for(int i=0; i<values.length; i++) { System.out.println(i); String current_row = ""; for(int j=i+1; j<values.length; j++) { double calculated_similarity_score = Math.abs(pc.correlation(values[i], values[j])); int link=0; if(calculated_similarity_score>threshold) { link = 1; } if(i==(values.length-1) && link==1) { edges+=i+"\t"+j; } else if(link==1) { edges+=i+"\t"+j+"\r\n"; } } } useful_tools.createTextFile(output_directory, "network.txt", edges); } }
azim58wiki: